

Fundação Universidade Federal de Rondônia – UNIR Núcleo de Ciências Exatas e da Terra – NCET Departamento de Física Campus de Porto Velho – RO

数 UNIR

UNIVERSIDADE FEDERAL DE RONDÔNIA

DEPARTAMENTO DE FÍSICA CAMPUS PORTO VELHO

DISCIPLINA:	CÓDICO
FÍSICA I	CÓDIGO:
FISICAT	5

Carga Horária:	Teórica	Prática	Presencial	Distância	Total	
	Semanal	5 aulas	1	6		6 horas
	Semestral	100 horas	20 horas	120 horas		120 horas

PROFESSOR (A):	MAT. SIAPE
Laudileni Olenka	1459338

I - EMENTA:

Medidas – Movimento em 1D – Vetores; Movimento em 2D e 3D (cinemática translacional) – Força e Movimento – Trabalho e Energia – Sistemas de Partículas – Rotação (Cinemática Rotacional) – Torque e Momento Angular.

II - OBJETIVOS:

Promover conhecimento básico de Mecânica Clássica com ferramental teórico-matemático observando o contexto histórico filosófico de cada assunto do conteúdo.

III - COMPETÊNCIAS E HABILIDADES

A apresentação e explanação dos conceitos envolvidos nos fenômenos físicos relacionados à mecânica contribuirão para a formação conceitual e contextualizada indispensáveis para um futuro professor na área de Física.

IV - CONTEÚDO PROGRAMÁTICO

Introdução

Medição; Algarismos significativos; SI; Mudança de unidades, Comprimento; Tempo; Massa.

Movimento em 1D

Movimento retilíneo; Posição e Deslocamento, Velocidade média; Velocidade instantânea; Aceleração; Aceleração constante e queda livre, Gráficos e integração de gráficos.

Vetores

Vetores e escalares; Soma geométrica de vetores; Vetores unitários; Adição de vetores através de suas componentes; Multiplicação de vetores (produto escalar e vetorial), Posição e deslocamento; Velocidade média e instantânea; Aceleração média e instantânea.

Movimento em 2D e 3D

Movimento em duas e três dimensões, Movimento de projéteis (movimento parabólico), Movimento Circular Uniforme (MCU), gráficos e integração de gráficos.

Força e Movimento

Primeira Lei de Newton (Inércia); Força; Massa, Segunda Lei de Newton (Efeito da Força). Força gravitacional, Peso e Força Normal; Atrito, Terceira Lei de Newton (Ação e Reação); Propriedades do Atrito; Força de arrasto e velocidade terminal.

Trabalho e Energia

Trabalho e Energia Cinética, Trabalho realizado pela força gravitacional, Trabalho realizado por uma força elástica, Trabalho por uma força variável qualquer, Potência, Independência da trajetória para uma Força Conservativa; Escolha da referência para determinar a Energia Potencial, Conservação da Energia Mecânica; Interpretação da curva de energia potencial.

Sistemas de Partículas

Centro de Massa (via somatória), Segunda Lei de Newton para um sistema de partículas; Momento linear, Forças internas e externas, Princípio da Conservação do Momento Linear, Colisões e impulsos: Colisões Elásticas e Inelásticas em uma Dimensão; Colisões em duas dimensões; Sistemas de massa variável (Foguete).

Rotação

Variáveis de rotação (coordenadas polares); Natureza das grandezas angulares,

Aceleração angular constante, Relação das variáveis lineares e angulares, Energia Cinética de Rotação; Momento de Inércia (via integração).

Torque e Momento Angular

Torque; Segunda Lei de Newton para Rotação, Trabalho e Energia Cinética da Rotação, Rolamento. Momento Angular de um Corpo Rígido em torno de um eixo, Equilíbrio estático de corpos extensos.

V - RECURSOS DIDÁTICOS E MATERIAIS NECESSÁRIOS

Quadro, pincel, data show.

VI - METODOLOGIA

Aulas expositivas com demonstrações teóricas;

Resolução e discussão de práticas e exercícios;

Atividades de prática vivenciada

VII - AVALIAÇÃO

Serão aplicadas 3 avaliações individuais (80% da nota);

Serão aplicadas 3 trabalhos individuais (20% da nota);

A média final será dada pela média obtida pela soma de todas as (6) notas e divididas por 3

VIII - CRONOGRAMA DAS ATIVIDADES Semana 01 Medidas Semana 02 Movimento em 1D Semana 03 Vetores Semana 04 Movimento em 2D e 3D (cinemática translacional) Semana 05 Atividade de prática vivenciada Semana 06 PROVA 1 Semana 07 Força e Movimento -Semana 08 Aplicações e força de atrito Semana 09 Trabalho e Energia Semana 10 Atividade de prática vivenciada Semana 11 Atividade de prática vivenciada Semana 12 PROVA 2 Semana 13 Sistemas de Partículas

Rotação (Cinemática Rotacional)
Torque
Momento Angular
Atividade de prática vivenciada
Atividade de prática vivenciada
PROVA 3
REPOSITIVA

IX - REFERÊNCIAS

BÁSICA:

- 1 HALLIDAY, David; RESNICK, Robert; WALKER, Jearl. Fundamentos de Física: Mecânica, v. 1.Rio de Janeiro: LTC.
- 2 NUSSENZVEIG, Herch Moisés. Curso de Física Básica: Mecânica, v. 1. São Paulo: Ed. Edgard Blücher Ltda.
- 3 YOUNG, Hugh D.; FREEDMAN, Roger A. Física I: Mecânica, v. 1. São Paulo: Addison Wesley.

COMPLEMENTAR:

- 1 ALONSO, Marcelo e FINN, Edward J. Física: um curso universitário, v. 1. São Paulo: E. Blucher.
- 2 CHAVES, Alaor; SAMPAIO, José Luiz. Física Básica: Mecânica, v. 1. São Paulo: LTC.
- 3 LUIS, Adir Moysés. Problemas de Física, v. 1. Rio de Janeiro: Guanabara Dois.
- 4 MCKELVEY, John P. Física, v. 1. São Paulo: Harbra.
- 5 TIPLER, Paul A., MOSCA, Gene. Física para cientistas e engenheiros: Mecânica, Oscilações e Ondas, termodinâmica, v. 1. Rio de Janeiro: LTC.

Professor da Disciplina:

Porto Vetho, 14/06/2018

Porto Velho 19 /06 /2018

Anailde Ferreira da Silva

Coordenated or report Mentosto Filica Física

Port. 661/2017/GR/UNIR de 13/07/17

DEPARTAMENTO DE FÍSICA CAMPUS PORTO VELHO

DISCIPLINA:

FÍSICA EXPERIMENTAL I

CÓDIGO:

Carga Horária:		Teóric a	Prática	Presen	Dist	Total
	Semanal	_*_	2 aulas	2h		2 h
	Semestral		40 horas			40 h

PROFESSOR (A):

Laudileni Olenka

MAT. SIAPE 1459338

I - EMENTA:

Utilizar e identificar aparelhos de medidas, tais como: régua, paquímetro, micrômetro, balança, aplicar nas medidas de experimentos de Mecânica e Dinâmica.

II - OBJETIVOS:

Desenvolvimento de habilidades e competência através de experimentais em que o aluno deverá desenvolver metodologia de estudos de fenômenos físicos, reproduzi-los, compreendê-los diante das teorias físicas relacionadas.

III - COMPETÊNCIAS E HABILIDADES

Discutir e entender os conceitos envolvidos nos fenômenos físicos no conteúdo de mecânica e relacionado com medidas, grandezas e erros experimentais, permitindo uma formação conceitual e contextualizados indispensáveis para um futuro professor da área de Física.

IV - CONTEÚDO PROGRAMÁTICO

Medição, Movimento Retilíneo, Movimento de projéteis (movimento parabólico), Movimento Circular Uniforme (MCU), Gráficos, Atrito, Colisões e impulsos, Rotação, Torque.

V - RECURSOS DIDÁTICOS E MATERIAIS NECESSÁRIOS

Conjuntos didáticos

Quadro branco

Data show

Apostila de laboratório

VI - METODOLOGIA

Nas aulas práticas em laboratório, a parte introdutória da disciplina é apresentada através de aulas expositivas. Os alunos trabalham em equipes para a montagem dos experimentos, sob a supervisão e orientação do professor. Na execução da atividade experimental as equipes seguem os roteiros dos experimentos, que contêm uma introdução teórica e o procedimento experimental, podendo consultar livremente livros e material escrito sobre a parte teórica da disciplina.

Em cada aula de laboratório, os dados extraídos do experimento, ás respostas às questões, e Militara Nisoed, 46240 parte do relatório experimental que é elaborado individualmente pelos

- Serão aplicadas três avaliações individuais, valendo 70 pontos cada;
- Três relatórios individuais, valendo 30 pontos cada;
- A média final é a soma das (seis) notas, dividido por três (média simples).

VIII - CRONOGRAMA DAS ATIVIDADES

Semana 01	Introdução ao Laboratório de Física	
Semana 02	Como fazer relatórios	

Semana 03	. Medidas	
Semana 04	Teoria dos erros	
Semana 05	Gráficos	
Semana 06	Atividade de prática vivenciada	
Semana 07	PROVA 01	
Semana 08	Experimento movimento uniforme	
Semana 09	Experimento movimento uniformemente variado	(N. S. 1.(1)
Semana 10	Experimento queda livre	
Semana 11	Atividade de prática vivenciada	
Semana 12	PROVA 2	
Semana 13	Experimento Leis de Newton	
Semana 14	Experimento plano inclinado	
Semana 15	Experimento força de atrito	
Semana 16	Experimento conservação de energia	
Semana 17	Atividade de prática vivenciada	
Semana 18	PROVA 3	
Semana 19	REVISÃO	
Semana 20	REPOSITIVA	

IX - REFERÊNCIAS

BÁSICA:

- Fundamentos de Física, vol. 4, D. Halliday, R. Resnick e J. Walker, LTC.
- Física, Vol. 2, P. Tipler, 5ª Ed. 2006, LTC.

COMPLEMENTAR:

Apostila de laboratório.

Professor da Disciplina:

Porto Velho, 14/06/2018

Porto Velho 19/06/2013

DEPARTAMENTO DE FÍSICA CAMPUS PORTO VELHO

DISCIPLINA, CO. 1.4	
DISCIPLINA: Cálculo 1	CÓDIGO:

Horária:		Teórica	Prática	Presencial	Distância	Total
	Semanal	6	0	6	0	-
120				-	0	0
	Semestral	120	0	120	0	120

PROFESSOR (A):	
Ariel Adorno de Sousa	MAT. SIAPE
	2279607

I - EMENTA:

Revisão de matemática básica necessária ao entendimento do Cálculo I (40 horas). Limites, derivadas e aplicações, integrais (primitivas imediatas, integração por substituição e por partes). Elaborar e desenvolver projetos políticos no ensino fundamental ou médio, a partir de análise livros-texto e programas e da observação em sala de aula. Elaboração de relatórios e Seminários.

II - OBJETIVOS:

Desenvolver habilidades com práticas indutivas para que o aluno possa adquirir competências na manipulação dos principais conceitos do da disciplina e que possa usá-la de forma lógica no processo ensino-aprendizagem de outras disciplinas que dependa desde conhecimento prévio.

III - COMPETÊNCIAS E HABILIDADES

Aplicar conhecimentos matemáticos, científicos, tecnológicos e instrumentais à Física; Empregar os conceitos do cálculo 1 para resolução de problemas que envolvam atividades do campo científico da física e química, possibilitando o aluno a execução de sua plenitude com domínio do conteúdo.

IV - CONTEÚDO PROGRAMÁTICO

- Revisão de matemática básica necessária ao entendimento do Cálculo I
- Limites;
- derivadas e aplicações;
- integrais (primitivas imediatas, integração por substituição e por partes).

V - RECURSOS DIDÁTICOS E MATERIAIS NECESSÁRIOS

Aulas expositivas

VI - METODOLOGIA

Aulas teóricas com a resolução de exercícios práticos e teóricos, contextualizando as equações com o dia-a-dia do aluno nas mais diferentes aplicações.

VII - AVALIAÇÃO

Serão realizadas 2 avaliações com uma substitutiva.

Datas das avaliações:

1º avaliação: 15 de outubro de 2018

2º avaliação: 05 de dezembro de 2018

Substitutiva: 12 de dezembro de 2018

VIII - CRONOGRAMA DAS ATIVIDADES

Modulo 1: (30/07/2018 à 20/08/2018)

Revisão de matemática básica necessária ao entendimento do Cálculo I

Modulo 2: (21/08/2018 à 15/10/2018)

Limites:

derivadas e aplicações;

Modulo 3: (16/10/2018 à 05/12/2018)

integrais (primitivas imediatas, integração por substituição e por partes)

IX - REFERÊNCIAS

BÁSICA:

- 1. Ávila G. S. Souza. Cálculo (volume 1). Rio de Janeiro: Livros Técnicos e Científicos, 1983.
- 2. Leithold, Louis. Cálculo (volume 1). São Paulo: Ed Raper & Row do Brasil Ltda., 1985.
- 3. Tom, Apostol. Cálculo (volumes 1 e 2). Editora Reverte.

COMPLEMENTAR:

- 4. Guidorizzi, Hamilton. Um curso de cálculo (volumes 1 e 2). Rio de Janeiro: Livros Técnicos e Científicos S. A., 1989.
- 5. Kreyszing, Erwin. Matemática superior (volumes 1 e 2). Rio de Janeiro: Livros Técnicos e Científicos, 1984.

Professor da	Disciplina:
--------------	-------------

Porto Velho 19/06 /2018

Coordenad 64

20106118

DEPARTAMENTO DE FÍSICA CAMPUS PORTO VELHO

DISCIPLINA: TRABALHO DE CONCLUSÃO DE CURSO -TCC

CÓDIGO: FCA30097

Carga Horária	:	Teórica	Prática	Presen	Dist	Total
	Semanal					10141
80						4
	Semestral	20	60			00

PROFESSOR (A): ANAILDE FERREIRA DA SILVA

MAT. SIAPE 2146167

I - EMENTA:

Temas livres dentro das pesquisas desenvolvidas por grupos do curso de Física.

II - OBJETIVOS:

Concluir o desenvolvimento da redação final da monografia. Realizar uma apresentação oral pública sobre o Trabalho de Conclusão do Curso desenvolvido.

III - COMPETÊNCIAS E HABILIDADES

Elaborar e desenvolver projetos políticos para o ensino fundamental ou médio, a partir de análise livros-texto e programas e da observação em sala de aula. Desenvolver projetos. Elaboração de relatórios, seminários, artigos e monografías.

IV - CONTEÚDO PROGRAMÁTICO

- Elaboração do projeto da monografia;
- Pesquisa bibliográfica e construção do referencial teórico;
- Realização/finalização e organização de dados da pesquisa;
- Elaboração da redação final da monografía;
- Apresentação da monografia.

V - RECURSOS DIDÁTICOS E MATERIAIS NECESSÁRIOS

- Aula expositiva com apoio do quadro branco, pincel, apagador, datashow e computador.

VI - METODOLOGIA

O Trabalho de Conclusão de Curso – TCC é uma atividade curricular obrigatória onde cada discente terá um docente pesquisador como orientador, pertencente à UNIR. O TCC deverá ter o formato de Projeto de Pesquisa, a ser desenvolvido a partir do 5º período do curso quando será apresentado sob a forma de Monografía Científica. Para a realização dessa atividade curricular, estão previstas 80 (oitenta) horas. O TCC deverá ser elaborado, apresentado e julgado de acordo com a regulamentação do Curso de Licenciatura Plena em Física do DFIS (Regulamento de Trabalho de Conclusão de Curso).

VII - AVALIAÇÃO

O discente e a Monografia serão avaliados de acordo com a regulamentação do Curso de Licenciatura em Física do DFIS (Regulamento de Trabalho de Conclusão de Curso).

VIII - CRONOGRAMA DAS ATIVIDADES

O discente deverá cumprir todos os requisitos previstos no Regulamento do TCC dentro do prazo previsto no Calendário Acadêmico 2018.

IX - REFERÊNCIAS

BÁSICA:

- ALMEIDA, R.O.; SANTOS, E.M.M. O Trabalho de Conclusão de Curso (TCC): planejamento, execução e redação da monografia. Salvador: UNYAHNA, Editora Quarteto, 2003.
- ALMEIDA, R.O. O Texto Científico: diretrizes para elaboração e apresentação. 3ª Edição revisada e atualizada. Salvador: UNYAHNA, Editora Quarteto, 2003.
- ARROS, A. J. P., LEHFELD, N.A.S., Fundamentos de metodologia. São Paulo: McGraw-Hill do Brasil, 1986.

COMPLEMENTAR:

- Associação Brasileira De Normas Técnicas. Normas ABNT sobre documentação. Rio de Janeiro, 2005.
- BASTOS, L. R., PAIXÃO, L., FERNANDES, L. M., Manual para a elaboração de projetos e relatórios de pesquisa, teses e dissertações. 3ª ed. Rio de Janeiro: Zahar, 1982.
- CERVO, A. L., BERVIAN, P. A., Metodologia científica: para uso dos estudantes universitários. São Paulo: McGraw-Hill do Brasil, 1983.
- 7. COSTA, A. F. G., Guia para elaboração de relatórios de pesquisa: monografia. 2ª ed. Rio de Janeiro: UNITEC. 1998.
- MARTINS, G.A. Manual para elaboração de Monografias e Dissertações. São Paulo: Editora Atlas, 2000.

Porto Velho-RO, 19/06/2018.

Professor da Disciplina Anailde Ferreira da Silva Siape 2146167 Aprovado pelo Departamento em 19/06/18

Anailde Ferreira da Silva Chefe do Departamento de Fisica Port. 661/2017/GR/UNIR de 13/07/17

Coordenador do Curso de Física

DEPARTAMENTO DE FÍSICA CAMPUS PORTO VELHO

DISCIPLINA: MECÂNICA CLÁSSICA

CÓDIGO: FCA30089

Carga Horária:		Teórica	Prática	Presen	Dist	Total
	Semanal	4				80
						80
	Semestral					

PROFESSOR (A): ELIE ALBERT MOUJAESS 2018-2

MAT. SIAPE 2032857

I - EMENTA:

Mecânica Newtoniana, movimento em uma, duas e três dimensões, movimento de um sistema de partículas, dinâmica de corpo rígido, gravitação, equações de Lagrange. equações de movimento de Hamilton, equações de Hamilton-Jacobi.

II - OBJETIVOS:

Treinamento na resolução de exercícios de sistemas modelos envolvendo a cinemática, dinâmica avançada com formalismo de Lagrange e de Hamilton.

III - COMPETÊNCIAS E HABILIDADES

Desenvolvendo as capacidades intelectuais, capacidade de auto-aprendizado, enfrentar problemas, capacidade de trabalho em equipe, capacidade de expressão oral e escrita.

IV - CONTEÚDO PROGRAMÁTICO

<u>Unidade I:</u> Corpo Rígido; Graus de Liberdade de um Corpo Rígido; Vetores e Tensores; Estática do corpo rígido; Energia Cinética e Momento Angular de um corpo rígido; Parâmetros de Cayley-Klein; Teorema de Euler; Introdução à Dinâmica do Corpo Rígido; Movimento Giroscópico; Tensor de Inércia; Matrizes de Rotação e Ângulos de Euler.

<u>Unidade II:</u> Cálculo Variacional; Equação de Euler-Lagrange; Problemas Clássicos do Cálculo Variacional.

<u>Unidade III</u>: Formulação Lagrangiana da Mecânica Clássica; Princípio de Hamilton; Coordenadas Generalizadas; Equações de Euler-Lagrange em Coordenadas Generalizadas; Equivalência entre as Leis de Newton e a Formulação Lagrangiana; Leis de Conservação.

<u>Unidade IV:</u> Formulação Hamiltoniana da Mecânica Clássica; Equações de Hamilton; Equação do Hamilton-Jacobi. Espaço de Fase e Teorema de Liouville; Teorema de Virial.

V - RECURSOS DIDÁTICOS E MATERIAIS NECESSÁRIOS

Quadro/Data Show: Instrumentos de medida e equipamentos para eventuais demonstrações. Eventual uso de retroprojetor e de projetor multimídia se precisar

VI - METODOLOGIA

Os conteúdos serão apresentados por meio de aulas expositivas que apresentem os conceitos físicos a serem estudados e por outras estratégias complementares: resolução de problemas práticos e discussões na sala da aula.

VII - AVALIAÇÃO

Terá duas provas (P1 e P2) ambas valem 35%. Atividades na sala da aula sob a forma de exercícios resolvidos em grupos de duas pessoas (ou tres no maximo) (A1) (30%) A primeira prova acontecerá na primeira semana de outubro e a segunda prova será na segunda semana do dezembro. A prova repositiva substituirá a prova da menor nota. A nota media (NM) será calculada através da equação:

NM = 0.35(P1+P2) + 0.3 A1

VIII - CRONOGRAMA DAS ATIVIDADES

agosto 2018 - setembro 2018 :Unidade I.

Setembro 2018 - Outubro 2018 : Unidades II e III.

Outubro 2018 - Dezembro 2018: Unidade IV.

IX - REFERÊNCIAS BÁSICA:

- 1. CHOW, T. L. Classical Mechanics. New York: Wiley.
- 2. MARION, J. B.; THORNTON, S. T. Classical Dynamics of Particles and Systems. Fort Worth: Saunders College.
- 3. GOLDSTEIN, H. Classical Mechanics. Addison-Wesley.

COMPLEMENTAR:

- 5. BARCELOS NETO, J. Mecânica Newtoniana, Lagrangiana e Hamiltoniana. São Paulo: Livraria da Física.
- 6. LANCZOS, C. The Variational Principles of Mechanics. New York: Dover.

7. SYMON, K. R. Mecânica. Rio de Janeiro: Campus.

8. GREINER, W. Classical Mechanics: Point Particles and Relativity. New York: Springer.

Professor da Disciplina:

Lli Hogars

20 106/2018

Porto Velho 19 106 18

Coordenador do Corso de Física
Anailde Ferreira da Silva

Anailde Ferreira da Silva Chefe do Departamento de Física

Port. 661/2017/GR/UNIR de 13/07/17

DEPARTAMENTO DE FÍSICA CAMPUS PORTO VELHO

DISCIPLINA: TERMODINÂMICA

CÓDIGO: FCA30081

Carga Horária:		Teórica	Prática	Presen	Dist	Total
	Semanal	1			Dist	Total
	Semanar	4				80
						- 00
	Semestral					

PROFESSOR (A): ELIE ALBERT MOUJAESS 2018-2

MAT. SIAPE 2032857

I - EMENTA: Conceito de temperatura. Equilíbrio termodinâmico. A primeira lei da termodinâmica. Energia interna. Fluxo de calor. Calor específico. Equações de Estados. Processos termodinâmicos. Ciclos Calor. A Segunda lei da termodinâmica. Entropia. Potenciais Termodinâmicos. Teoria cinética elementar dos gases.

II - OBJETIVOS: Compreender as leis da termodinâmica. Promover um conhecimento contextualizado através da percepção da importância desse campo de estudo da física bem como fundamentar os conceitos de reversibilidade e irreversibilidade e preparar o estudante a identificar os estados de equilíbrio de sistemas termodinâmicos.

III - COMPETÊNCIAS E HABILIDADES

Desenvolvendo as capacidades intelectuais, capacidade de auto-aprendizado, enfrentar problemas, capacidade de trabalho em equipe, capacidade de expressão oral e escrita.

IV - CONTEÚDO PROGRAMÁTICO

UNIDADE I : Princípio Zero da Termodinâmica; Gases ideais; Gases Reais; Teoria Cinética dos Gases; Propriedades de líquidos e sólidos.

UNIDADE II: Conceitos Matemáticos; Derivadas Parciais Termodinâmicas; Relações de Maxwell; Cálculo de Grandezas Termodinâmicas a partir de Relações PVT e Capacidades Caloríficas.

UNIDADE III: Uso das Funções Termodinâmicas como critério de equilíbrio; Regra das Fases.

UNIDADE IV: Primeiro princípio da Termodinâmica; Trabalho; Calor; Entalpia.

UNIDADE V: Segundo Princípio da Termodinâmica; Equação de variação de entropia.

UNIDADE VI: Diagrama PV, RT, VT, Pontos Triplo e Critico; Equações de Clausius-Clapeyron; Vaporização, Fusão e Sublimação; Diagramas Termodinâmicos. Tabelas; Grandezas e transição de fases; Equações empíricas de Pressão de Vapor.

V - RECURSOS DIDÁTICOS E MATERIAIS NECESSÁRIOS

Quadro/Data Show: Instrumentos de medida e equipamentos para eventuais demonstrações. Eventual uso de retroprojetor e de projetor multimídia se precisar

VI - METODOLOGIA

Os conteúdos serão apresentados por meio de aulas expositivas que apresentem os conceitos físicos a serem estudados e por outras estratégias complementares: resolução de problemas práticos e discussões na sala da aula.

VII - AVALIAÇÃO

Terá duas provas (P1 e P2) ambas valem 35%. Atividades na sala da aula sob a forma de exercícios resolvidos em grupos de duas pessoas (ou tres no maximo) (A1) (30%) A primeira prova acontecerá na primeira semana de outubro e a segunda prova será na segunda semana do dezembro. A prova repositiva substituirá a prova da menor nota. A nota media (NM) será calculada através da equação:

NM = 0.35(P1+P2) + 0.3 A1

VIII - CRONOGRAMA DAS ATIVIDADES

agosto 2018 - setembro 2018 : Unidades I, II Setembro 2018 - Outubro 2018 : Unidades III, IV Outubro 2018 - Dezembro 2018 : Unidades V, VI.

IX - REFERÊNCIAS

BÁSICA:

- 1. Callen, H. B. Thermodynamics and an Introduction to Thermostatistics, 2nd ed., John Wiley, New York, 1985.
- 2. M. W. Zemansky, Calor e Termodinâmica (Editora Guanabara, Rio de Janeiro, 1981).
- 3. R. P. Feynman, R. B. Leighton, M. Sands, The Feynman Lectures on Physics (Addison-Wesley 1963).

COMPLEMENTAR:

- 4. Zemansky, M.W. and Dittman, R. H., Heat and Thermodynamics 7th ed., McGraw-Hill, 1997.
- 5. Termodinâmica, Mário José de Oliveira, Editora Livraria da Física.
- 6. Fundamentos da Termodinâmica. Sonntag, R. E. e Borgnak Ke, C.. Ed. Blucher.
- 7. Thermodynamics and an Introduction to Thermostastics. Callen, H. B., IE-Wiley.

8. Termodinâmica, Walter F. Wreszinski, Edusp.

Professor da Disciplina:

100

Porto Velho 19 / 06 / 18

Anailde Ferreira da Silva

Coordena do Departamento de Física Port, 66120 FIG HUMIX de 430 Frésica

DEPARTAMENTO DE FÍSICA CAMPUS PORTO VELHO

DISCIPLINA: Estágio Supervisionado II

CÓDIGO: FCA30090

Carga Horária:		Teóri ca	Práti ca	Presen	Dist	Tot al
	Semanal		7			7
	Semestral		140			140

PROFESSOR (A):Luciene Batista da Silveira	MAT. SIAPE
	1432407

I - EMENTA:

Elaboração e aplicação de uma unidade de ensino de conteúdos de física pelos licenciados em uma escola da rede pública (regência) ou privada nas últimas séries do ensino fundamental e na primeira série do ensino médio; coleta, registro e análise de informações obtidas no desenvolvimento das aulas em situações concretas de ensino

II - OBJETIVOS:

Desenvolver habilidades e competências na Regência de classe, incluindo as demais dimensões da atuação profissional como sua participação no Projeto educativo da escola, seu relacionamento com alunos e com a comunidade. Buscar na escola uma parceria para o desenvolvimento de um Projeto de Estágio Docente Supervisionado planejado e avaliado, conjuntamente, pela Universidade e Escolas campo de Estágio, com objetivos, tarefas e responsabilidades claras e auxílio mútuo, visando competência metodológica, comprometimento de classe representativa do professor(a) e autocrítica pelo aperfeiçoamento profissional e autonomia intelectual para promover mudanças curriculares que forem necessárias para uma Educação melhor e para todos.

III - COMPETÊNCIAS E HABILIDADES

Elaborar e desenvolver projetos políticos para o ensino fundamental ou médio, a partir de análise livros-texto e programas e da observação em sala de aula. Elaboração de relatórios e Seminários.

IV - RECURSOS DIDÁTICOS E MATERIAIS NECESSÁRIOS

- Leituras dirigidas;
- Dinâmicas de Grupo;
- Utilização de Projetores multimídia.

V - METODOLOGIA

O processo de ensino aprendizagem será feito através de uma linguagem simples e intuitiva, usando recursos visuais, manuais.

- Aulas expositivas- dialogadas e debates a partir de estudos de textos e relatos ede experiências;
- Observações realizadas no campo de Estágio;
- -Elaboração de planos de ensino;

Ação docente: organização e desenvolvimento de atividades docentes(docência), com, acpompanhamento do supervisor e orientador de estágio;

- Orientações momentos de orientação coletiva, na UNIR em encontros semanais;
- -Seminários;
- Elaboração do relatório final.

VI - AVALIAÇÃO

A avaliação se dará através de atividades (seminários, elaborapção de planos de cursos, avaliação do Professor na Escola) [valor de 30 pontos], e relatório (parte escrita e apresentação oral) [valor de 70 pontos].

A nota final (NF) será calculada através da seguinte fórmula:

$$NF = 0.7.R + 0.3.MA$$

onde R é o relatório (escrito e apresentação oral) e MA é a média final das atividades.

Será considerado aprovado o aluno que obtriver no mínimo média final igual a 60 (sessenta) e uma frequência mínima de 75%.

VII - CRONOGRAMA DAS ATIVIDADES

2CR - Orientações, atividade de planejamento, estudos e seminários.

5CR - Estágio Supervisionado de Docência - Campo de Estágio

VIII - REFERÊNCIAS

BÁSICA:

1. Pesquisas em ensino de física: . 3 ed. Escrituras, 2004. 166 p. v

 MORETTO, Vasco Pedro; LENZ, Urbano. Física em módulos de ensino: mecânica. Carajás, s.d.. 535 p. 3.

3. PETEROSSI, Helena Gemignani. ANOTAÇÕES SOBRE METODOLOGIA E PRÁTICA DE ENSINO NA ESCOLA DE 1. GRAU. 4 ed. Loyola, 1996. 135 p. 4.

4. Didática e Interdisciplinaridade: . 12 ed. Papirus, 1998. 192 p. v.

COMPLEMENTAR:

 DICKEY, Frank G.; ADAMS, Harold P. Princípios básicos de prática de ensino: ed. Fundo de Cultura, 1956. 396 p. v. 6.

TAKIMOTO, Elika. História da física na sala de aula: . ed. Livraria da Física, [2009].
 p. v 7. Didática: o ensino e suas relações. 14 ed. Papirus, 2009. 183 p. v.

Porto Velho-RO, 19/06/2018.

Professor da Disciplina Luciene Batista da Silveira Siape 1432407 Aprovado pelo Departamento em 19/06/18

An Anailde Ferreira da Silva
Chefe do Departamento de Fisica
Port. 661/2017/GR/UNIR de 13/07/17
Coordenador do Curso de Física

Rocels em 20106/18
an still for
Availed

Fundação Universidade Federal de Rondônia- UNIR

Núcleo de Ciências Exatas e da Terra-NCET Departamento de Física- DFIS

Disciplina: Estratégia do Ensino de Física	Código:
	FCA 30083

Carga Horária		Teórica	Prática	Presenc.	Dist.	Total
	Semanal	02	02			04
	semestral	40	40			80

Professor: Artur de Souza Moret	SIAPE:
	0396638

I- EMENTA

- 1- Discussão em sala de aula de três teóricos que balizam o curso: Piaget, Vigotsky e Paulo Freire;
- 2- Construção coletiva de estratégias, baseada nos teóricos, para serem desenvolvidas em sala de aula;
- 3- apresentação do resultado, simulando a vivência em sala, com apresentação de conteúdo utilizando estratégias para o Ensino de Física.

II- OBJETIVOS

Geral

O Discente deve ser capaz de desenvolver competências teóricas e práticas para a elaboração de estratégias, ou mesmo reprodução, para o Ensino de Física.

Mais objetivos

Desenvolver estratégias distintas do que é comumente prática do ensino de Física Reproduzir estratégias inovadoras e consolidadas para o Ensino de Física

Apresentar seminário contendo estratégias para o Ensino de Física

III- COMPETÊNCIAS E HABILIDADES

- Reprodução de estratégias inovadoras para o Ensino de Física

- apresentação de seminários
- elaboração e apresentação de aula com conteúdo teóricos e práticos do Ensino de Física
- construir e aprimorar habilidades para uso de estrategias no Ensino de Física

IV- CONTEÚDO PROGRAMÁTICO

Discutir as estratégias teóricas educaionais dos teóricos: Gean Piaget, Lev Semenovitch Vigotsky, Paulo Freire.

Desenvolvimento em sala de aula de estratégias (inovadoras e novas) de ensino de Física baseada nos teóricos utilizados da disciplina

V- RECURSOS DIDÁTICOS E MATERIAIS NECESSÁRIOS

- acesso a base de dados para leitura de textos
- data show
- materiais adequados para a estratégia específica

VI- METODOLOGIA

Os procedimentos paera o desenvolvimento da Disciplina são construídos em 4 partes:

- 1- leitura dos teóricos definidos para a disciplinas .
- 2- Discussão em sala de aula dos teóricos e de autores referenciais para a disciplina
- 3- apresentação de estratégias de Ensino de Física já elaboradas e disponíveis
- 4- apresentação de estratégias elaboradas pelos Discentes da Disciplina

VII- AVALIAÇÃO

item de avaliação	notas
Fichamento	20
Apresentação da parte conceitual	20
Elaboração das propostas de aula	20
Apresentação das aulas	40
TOTAL	100

VIII- CRONOGRAMA DAS ATIVIDADES

- 1- leitura dos teóricos definidos para a disciplinas- 10 horas
- 2- Discussão em sala de aula dos teóricos e de autores referenciais para a disciplina-

20 horas

- 3- apresentação de estratégias de Ensino de Física já elaboradas e disponíveis- 25 horas
- 4- apresentação de estratégias elaboradas pelos Discentes da Disciplina- 25 horas

IX- REFERÊNCIAS BÁSICAS

KENSKY, Vani Moreira. *Educação e Tecnologias: o novo ritmo da informação*. Ed. Papirus. 8 ed. Campinas, SP. 2012.

VYGOTSKY, L. S. Et. Al. Linguagem, Desenvolvimento e Aprendizagem. 14 ed. Ed. Ícone. 1917.

DONGO-MONTOYA, A. O. Teoria da Aprendizagem na Obra de Jean Piaget. Ed. UNESP. SP. 2009.

PIAGET, Jean. A Psiscologia da inteligência. Ed. Vozes. Petrópolis. Rj. 2013

BARRETO, V. Paulo Freire para Educadores. Ed. Arte & CIência. SP. 2004.

Professor da Disciplina

~ ** **

Data: 19/06/2018

Coordenador do Curso de Física

Anailde Ferreira da Silva Chefe do Departamento de Fisica Port. 661/2017/GRIUNIR de 13/07/17

Data: 19/06/18